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ABSTRACT. In streamflow forecasting, transient stages and discharges are
computed for various forecast points along a river from a given (predicted
or observed) stage or discharge hydrograph at either the upstream extremity
of the river reach as in the case of a flood wave propagating in the down-
stream direction, or at the downstream extremity as in the case of a tidal
or hurricane surge propagating in the upstream direction. The stages and
discharges may be computed by an implicit dynamic routing technique in which
the complete one-dimensional differential equations of unsteady flow are
solved by an implicit four-point finite difference technique which neces-
sitates the solution of successive systems of nonlinear equations. An
extrapolation technique along with a special quad-diagonal Gaussian elimina-
tion procedure are used in conjunction with the Newton-Raphson method to
provide a very efficient solution technique for the nonlinear systems. The
implicit dynamic routing technique is applied to some recent floods and
hurricane surges which have occurred in the lower portion of the Lower
Mississippi River. The computed and observed stages are compared, and the
results of numerical experiments are presented which illustrate the effects
of the computational time step size, the Manning roughness coefficient, and
the various acceleration terms in the equation of dynamic equilibrium.
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INTRODUTION

Background. The complete one-dimensional partial differential equations
of unsteady flow, consisting of an equation for conservation of mass and an
equation for conservation of momentum, form a basis for constructing very
general and powerful mathematical models which can be used in streamflow
forecasting to compute transient stages and discharges at various points along
a river. Among the types of transient flow.which may be simulated using these
models are flood waves which propagate downstream in rivers with very mild
bottom slopes and hurricane or tidal surges which propagate upstream against
the normal river flow. 1In each case, the dynamic inertia and pressure forces
can interact significantly with the friction forces to produce the spatial and
temporal changes which the wave undergoes as it propagates through the river.

Due to the complexity of the complete unsteady flow equations, many of the
mathematical models which have been used in the past and those which are still
being used in operational streamflow forecasting are based primarily on the
equation for conservation of mass while the equation for conservation of
momentum is either completely ignored or greatly simplified to include only
the effects of the friction forces. Such simplifications can cause inaccura-
cies in the computed stages and discharges, particularly when the wave move-
ment is influenced by the neglected inertia and pressure forces as in the
examples of wave movement cited above. Many investigations have been
conducted in recent years to solve the complete unsteady flow equations via
numerical integration of finite difference expressions of the differential
equations. Beginning with the pioneering work of Stoker and his colleagues
[Stoker, 1957] who used an explicit finite difference technique to solve the
unsteady flow equations for routing of Ohio River floods, many others have
investigated unsteady flows using the explicit method, e.g., Liggett and
Woolhiser [1967], Dronkers [1969], and Garrison, et al. [1969]. However,
numerical stability considerations restrict this method to very small compu-
tational time steps (on the order of a few minutes or even seconds). For
this reason, the explicit method is very inefficient for the computation of
floods occurring in large rivers and having durations of days or even weeks.
To overcome this disadvantage, implicit finite difference techniques which
have no restrictions in the size of the time step due to numerical stability
have been investigated recently, e.g., Abbott and Ionescu [1967],

Dronkers [1969], Balloffet [1969], Baltzer and Lai [1969], Amein and Fang
(1970], Contractor and Wiggert [1972], Quinn and Wylie [1973], and Chaudhry
and Contractor [1973].

Purpose and scope. This paper presents an implicit four-point finite
difference technique for solving the unsteady flow equations in order to
compute stages and discharges for flood waves in rivers having very mild
bottom slopes and for hurricane surges propagating upstream against a down-
stream flow. The mathematical model is applied to the above types of
transient flow which have occurred during recent years in the lLower
Mississippi River. The computed and observed stages are compared, and
numerical experiments are conducted to examine the effects of the computa-
tional time step size and the Manning roughness coefficient, and to
determine the significance of the inertia and pressure terms relative to the
friction term in the equation for conservation of momentum.




General description of study reach. The portion of the Lower Mississippi
River of concern in this investigation is a 291.7 mile reach extending from
the Red River Landing gage (RM*302.4) downstream to thé Venice gage (RM 10.7).
Among the 14 continuous and intermittent gaging stations within the study
reach, those at Baton Rouge (RM 228.4), Donaldsonville (RM 175.4),

Reserve (RM 138.7), New Orleans, Carrollton (RM 102.8), Chalmette (RM 91.0) and
Pointe A La Hache (RM 48.7) are used to evaluate the computations. This
reach of the Lower Mississippi is confined within levees for most of its
length, although some overbank flow occurs along portions of the upper

70 miles. Throughout the study reach, the alluvial river meanders between
deep bends and relatively shallow crossings; the sinuosity coefficient is
approximately 1.6. The low flow depth varies from a minimum of 30 ft at some
crossings to a maximum bend depth of almost 200 ft. The average width is
approximately one-half mile. The average channel bottom slope for the study
reach is a very mild 0.0000064 ft/ft (0.034 ft/mi). The discharge varies
from low flows of about 120,000 cfs to flood discharges of over 1,200,000 cfs.

MATHEMATICAL MODEL

Unsteady flow equations. The one-dimensional differential equations of
unsteady flow are:
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Equation 1 is known as the continuity equation and conserves the mass of the
flow, while (2) conserves the momentum of the flow and is known as the equa-
tion of motion or dynamic equilibrium. In the above equations, x is the
distance along the channel, t is time, A is the wetted cross-sectional area,

V is the average velocity, h is the water surface elevation, S_ is the friction
slope, and g is the acceleration due to gravity. The first two terms in (2)
are the inertia terms; the first is the local acceleration slope and the

second is the convective acceleration slope. The third term is the water
surface slope which is equivalent to the depth gradient less the channel bottom
slope, S . A derivation of the unsteady flow equations may be found in

Stoker [7957], Chow [1959], and Henderson [1966].

Equations 1 and 2 constitute a system of first order, quasi-linear,
partial differential equations of the hyperbolic type. They contain two
independent variables, x and t, and two dependent variables, h and V; the
remaining terms are either functions of x, t, h and/or V, or they are con-
stants. These equations are not amendable to analytical solutions except in
cases where the channel geometry is uncomplicated and the nonlinear properties

*River Mile referenced from zero point at Head of Passes, Lla.



of the equations are either neglected or made linear. The equations may be
solved numerically by performing two basic steps. First, the partial dif-
ferential equations are represented by a corresponding set of finijte difference
algebraic equations; and second, the system of algebraic equations are solved
in conformance with prescribed initial and boundary conditions.

Implicit finite difference equations. Equations 1 and 2 are approximated
by implicit four-point finite difference expressions, and the continuous
X-t region in which solutions of h and V are sought is represented by a rec-
tangular net of discrete points as shown in Figure 1. The net points are
determined by the intersection of lines drawn parallel to the x and t axes.
Those parallel to the x axis represent time lines; they have a spacing of
At which need not be constant. Those parallel to the t axis represent discrete
locations along the river (x axis); they have a spacing of Ax which also need
not be constant. Each point in the rectangular network can be identified by
a subscript (m) which designates the x position and a superscript (n) which
designates the time line.

Using a generalized implicit four-point finite difference scheme, the
time derivatives are approximated by a forward difference quotient centered
between the mth and m+1 points along the x axis, i.e.,

n+l n+1 n n
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where K represents any variable. The spatial derivatives are approximated by
a forward difference quotient positioned between two adjacent time lines
according to weighting factors of 6.and 1-8, i.e.,
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Variables or functions other than derivatives are approximated at the time
level where the spatial derivative is evaluated by using the same weighting
factors, i.e.,
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A weighting factor of 6=1,.0 yields the forward fully implicit scheme used
by Baltzer and Lai [1969], Dronkers [1969], and examined by Gunaratnam and
Perkins [(1970]. A weighting factor of 6=0.5 yields the box scheme suggested
by Thomas [1934], and used by Amein and Fang [1970], Contractor and Wiggert
[1971], and Fread [1973b]. The influence of the 6 weighting factor on the



accuracy of the computations was discussed by Fread [1973a, 1974] who
concluded that the accuracy decreases as 0§ departs from 0.5 and approaches
1.0. This effect becomes more pronounced as the magnitude of the compu-
tational time step increases. In this paper, a weighting factor of 0.55
is used so as to minimize the loss of accuracy associated with greater 0
values while avoiding the possibility of a weak or pseudo-instability
noticed by Baltzer and Lai [1969], Quinn and Wylie [1973], and Chaudhry
and Contractor [1973] when a 6 of 0.5 is used.

When the finite difference operators defined by equations (3), (4),
and (5) are used to replace the derivatives and other variables in (1) and
(2), the following implicit four-point difference equations are obtained:
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by a compact quad-diagonal Gaussian elimination algorithm [Fread, 1971] which
is very efficient with respect to computing time and storage.

The efficiency of the method is quite dependent on the success with
which the first trial values are made. A method of parabolic extrapolation
has been found to provide trial values sufficiently close to the unknowns
to assure convergence within one to three iterations.

DATA REQUIREMENTS

Cross-sectional geometry. Cross-sectional properties were obtained from
a 1963 hydrographic survey of the Mississippi River [U. S. Army Engr. Dist.,
New Orleans, 1965]. Individual cross sections were plotted at all sections such as
crossings and entrances, midpoints, and exits of bends where the width and/or
depth were judged to change sufficiently to violate the assumption of linear
variation between adjacent cross sections. The cross sectional properties
at each section are described by a step function of the water surface width
B, as a function of the water surface elevation, h,. In this paper, is mean
sea level. From this basic data, cross-sectional widths and areas per%alnlng
to any water surface elevation, hn' above h1 can be computed by the following:

hn } hk
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and is the total cross-sectional area associated with each h, water

surface elevation. Approximately six to eight values of h, and B  are
sufficient to adequately describe the variation of B throughout tﬁe range
of possible water surface elevations at each section.

Cross sections are used at each of 13 continuous or intermittent
gaging stations along the 291.7 mile study reach. Also, an average of the indi-
vidual cross sections is computed for each point midway between adjacent gaging
stations. The average cross sections are weighted using the distance between in-
dividual cross sections as weighting factors. Thus, a total of 25 cross sections
are used for computational points along the study reach. The computational
distance intervals are unequal, ranging from approximately 6 to 21 miles.

Upstream boundary. For the case of a flood wave propagating downstream,
the upstream boundary consists of mean daily water surface elevations at
Red River Landing (RM 302.4). These are input as tabular values at 24 hr
intervals. Intermediate values are obtained via linear interpolation.
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and fi is Manning's roughness coefficient while B is the width of the cross
section at the elevation of the water surface.

Equations 6 and 7 constitute a system of algebraic equations which are
nonlinear with respect to the unknowns, i.e., the values of the dependent
variables h and V at the net points m and m+l at the time line designated
as n+tl. The terms associated with the nth time line are known from either
the initial conditions or previous computations.

Initial conditions. The initial conditions refer to the values of h and
V associated with each point along the x axis for the first time line. They
are obtained from: 1) a pPrevious unsteady flow solution; 2) a step-wise
steady gradually varied flow backwater computation; or 3) judicious estimates
which will converge to the true initial conditions when the unsteady flow
e€quations are solved with the boundary conditions held constant during the
first several time steps. The last method is used for the computations
Presented herein.

Boundary conditions. The boundary conditions consist of a description
of either water surface elevation (h) or discharge (AV) as a function of time
at the upstream and downstream extremities of the study reach. The downstream
boundary may also be a specified relationship between h and AV such as an
empirical rating curve, weir-type flow, or normal depth~-discharge relationship
corrected for unsteady effects. 1In this paper all flows are subcritical, a
condition which requires that one boundary condition be prescribed for the
upstream extremity of the river and one for the downstream extremity.

Method of solution. Equations 6 and 7 cannot be solved in an explicit
or direct manner for the unknowns since there are four unknowns and only two
equations. However, if (6) and (7) are applied to each of the (M-1)
rectangular grids between the upstream and downstream boundaries, a total of
(2M=-2) equations with 2M unknowns can be formulated. Then, prescribed
boundary conditions, one at the upstream boundary and one at the downstream
boundary, provide the hecessary additional two equations required for the
system to be determinate. The resulting system of 2M nonlinear equations
with 2M unknowns is solved by a functional iterative procedure, the
Newton-Raphson method [Isaacson and Keller, 1967]. Computations for the
iterative solution of the nonlinear system are begun by assigning trial
values to the 2M unknowns. Substitution of the trial values into the system
of nonlinear equations yields a set of 2M residuals., The Newton-Raphson
method provides a means for correcting the trial values until the residuals
vanish or are reduced to tolerable magnitudes. A system of 2M x 2M linear
equations relate the corrections to the residuals and to a coefficient
matrix composed of partial derivatives of each equation with respect to
each unknown variable in that equation. The coefficient matrix of the
linear system has a banded structure which allows the system to be solved




by a compact quad-diagonal Gaussian elimination algorithm ([Fread, 1971] which
is very efficient with respect to computing time and storage.

The efficiency of the method is quite dependent on the success with
which the first trial values are made. A method of parabolic extrapolation
has been found to provide trial values sufficiently close to the unknowns
to assure convergence within one to three iterations.

DATA REQUIREMENTS
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New Orleans, 1965]. Individual cross sections were plotted at all sections such as
crossings and entrances, midpoints, and exits of bends where the width and/or
depth were judged to change sufficiently to violate the assumption of linear
variation between adjacent cross sections. The cross sectional properties
at each section are described by a step function of the water surface width,
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stations. The average cross sections are weighted using the distance between in-
dividual cross sections as weighting factors. Thus, a total of 25 cross sections
are used for computational points along the study reach. The computational
distance intervals are unequal, ranging from approximately 6 to 21 miles.

Upstream boundary. For the case of a flood wave propagating downstream,
the upstream boundary consists of mean daily water surface elevations at
Red River Landing (RM 302.4). These are input as tabular values at 24 hr
intervals., Intermediate values are obtained via linear interpolation.




For the case of a hurricane surge propagating upstream, the upstream
boundary consists of a steady discharge (AV) at Red River Landing (RM 302.4).
This boundary condition is an assumption, since the discharge at the upstream
extremity is affected eventually by the propagating surge; however, it is
adequate for determining the discharges and water surface elevations
affected most by the hurricane surge at locations a considerable distance
downstream, e.g., Chalmette (RM 91.0) and Carrollton (RM 102.8).

Downstream boundary. For the flood wave, the downstream boundary
consists of mean daily water surface elevations at Venice (RM 10.7). These
are input as tabular values at 24 hr intervals. Intermediate values are
obtained via linear interpolation.

For the hurricane surge, the downstream boundary consists of hourly water
surface elevations at Pointe A La Hache (RM 48.7). These are input as tabular
values at hourly intervals.

Manning's roughness coefficients, 1In this paper, the 1963 spring flood
of March 5 to April 26 is used to obtain representative roughness coefficients
for the study reach. The observed stages and corresponding observed dis-
charges are used in conjunction with a steady, gradually varied flow
step-wise computation, similar to that reported by Fread and Harbaugh ([1971],
to determine the Manning 1 in an iterative fashion. Commencing with an
observed stage at a downstream gaging station and an assumed value for n,
the backwater profile is computed in a step-wise manner until a selected
upstream gaging station is reached. If the computed stage at the upstream
section agrees with the observed stage, the assumed n value is considered
correct; however, if they do not agree within an acceptable tolerance, n is
changed and the profile is recomputed. This process is repeated until the
computed upstream stages agree within the prescribed tolerance; the n used
in this last computation is assumed to be the correct value for that
pParticular reach and discharge. 1In this way, n is computed for a range of
discharges for each reach. Linear step-functions describing the relationship
between R and discharge are used in the computation of the friction slope,
Sf, in (8).

COMPUTATION OF FLOODS PROPAGATING DOWNSTREAM

Calibration of model. The implicit dynamic routing model was calibrated
using observed stzaés of the 1963 spring flood at selected stations throughout
the Red River Landing (RM 302.4) - Venice (RM 10.7) reach. The calibration
consisted of determining the functional relationship between n and discharge
(AV) for each of the sub-reaches: Red River Landing - Baton Rouge,

Baton Rouge - Donaldsonville, Donaldsonville - Carrollton, Carrollton -

Pte. A La Hache, and Pte. A La Hache - Venice. The calibration was accomplished
by a trial-and-error procedure in which trial n-AV relationships for each
sub-reach were used in the implicit dynamic routing model to compute stages

at the selected stations. Computational time steps of 24 hrs were used; this
time step coincided with the resolution of the stage hydrographs at the

upstream and downstream boundaries. The first trial n-AV relationships were
those obtained for each sub-reach via the iterative application of the steady




flow backwater computations described previously. Each n-AV relationship was
adjusted until the rms* error between observed and computed stages at the
selected stations was minimized. The needed adjustments proved to be minor,
thus requiring only a few trials. Comparisons of the observed stages with
the computed stages using the calibrated model are presented in Figures 2,

3, and 4 for six gaging stations within the study reach. The average rms
error for the six stations is 0.32 f¢t.

Verification of the model. The 1969 spring flood of January 23 to
March 27 was used to verify the calibrated model. The verification consisted
of comparing observed stages with those computed using the same n-AV rela-
tionships determined during the calibration of the model. As in the calibration
of the model, computational time steps of 24 hrs were used to verify the model.
Comparisons of the observed and computed stages for the 1969 flood are
presented in Figures 5, 6, and 7 for six selected stations within the study
reach. The average rms error for the six stations is 0.46 ft. The model was
also verified for floods occurring in 1966, 1968, and 1971 resulting in
average rms errors of 0.50, 0.43, and 0.40 ft, respectively.

COMPUTATION OF SURGES PROPAGATING UPSTREAM

In August 1969, Hurricane Camille produced a strong storm tide in the
Mississippi Delta area with water levels up to 12 ft. This high tide
(hurricane surge) Propagated into the Lower Mississippi River and traveled
upriver several hundred miles. The implicit dynamic routing technique was
used to compute the stages and discharges produced by the passage of the surge
at Chalmette (RM 91.0) and Carrollton (RM 102.8). The downstream boundary
condition was the observed hourly stage hydrograph at Pte. A La Hache (RM 48.7)
and the upstream boundary condition was an assumed steady discharge of 253,000
cfs at Red River Landing (RM 302.4)., The Manning roughness coefficients for
the study reach were maintained the same as determined during the calibration
of the 1963 spring flood.

The computed and observed stage hydrographs at Chalmette and Carrollton
are shown in Figure 8. The rms errors between the computed and observed
stage hydrographs are 0.33 ft. and 0.34 ft. for Chalmette and Carrollton,
respectively., A computational time step of 1 hour was used; this compares
to a maximum allowable time step of 0.15 hr which could be used in an explicit
solution of the unsteady flow equations.

The computed discharge hydrograph for Carrollton is shown in Figure 9,
The negative discharge is associated with flow in the upstream direction
resulting from the passage of the hurricane surge at Carrollton. Tt is
interesting to note that for a few hours after the main portion of the surge
has passed Carrollton, the discharge in the downstream direction is slightly
greater than before the surge arrived due to a sufficiently large transitory
depth gradient produced by the surge while it is in the upstream vicinity of
Carrollton.

*root mean square



NUMERICAL EXPERIMENTS

Effect of time step size. The 1963 flood was routed through the study
reach using different size time steps. The resulting stage hydrographs at
Donaldsonville are shown in Figure 10. There is little noticeable difference
between the hydrographs computed with 1, 24, and 48 hr time steps; however,
as the time step continues to increase in size the computed hydrographs
depart further from those computed with the smaller time steps. Since the
accuracy of the computations [Fread, 1973a and 1974] as well as the required
computation time decrease as the time step increases in size, there exists
a trade-off between efficiency and accuracy which is controlled by the
selection of the computational time step size. Such flexibility is a desir-
able advantage of the implicit dynamic routing method while the explicit
method is restricted to very small time steps in order to satisfy numerical
stability constraints. For comparison, the maximum permissible time step
which could be used by an explicit method to compute the 1963 flood is 0.15
hr., The ratio of the implicit time step to the explicit time step is known
as the Courant number, C . A summary of the effects of the size of the
computational time step 8s to computational efficiency and accuracy of the
implicit method for routing the 1963 flood through the study reach is
Presented in Table 1.

Effect of the Manning roughness coefficient. A knowledge of the effects
of Manning's n on the computed stages is essential for achieving an efficient
and accurate calibration of the implicit dynamic routing model. The computed
stages are affected quite significantly by the particular values of Manning's
n that are used in the computations, This is illustrated by the stage
hydrographs for Donaldsonville shown in Figure 11. Using the 1963 flood and
the calibrated n values for all reaches from Red River Landing (RM 302.4) to
Venice (RM 10.7), the computed stage hydrograph for Donaldsonville is shown
in Figure 11 as the middle hydrograph which is denoted by & . Upon
increasing i by 20 percent for the reach from DonaldsonvilTe to Carrollton
and repeatin8 the computations, the resulting stages for Donaldsonville,
shown in Figure 11, are seen to be higher than those computed using
ﬁo. The n values for the same reach are also decreased by 20 percent
and the computations repeated. The Donaldsonville stage hydrograph
computed using the decreased fi values is shown in Figure 11 to be lower
than the stage hydrograph computed using i . The 20 percent variation
is 1 results in approximately a 14 perceng variation in the computed
stagg hydrographs at Donaldsonville. Although a one to one relationship
between a change in Manning's fi and the resulting change in the computed
stage does not exist for the Donaldsonville gage; nevertheless, the effect
of altering n is quite significant.

When the 11 values vary from reach to reach along a river, as found to be
the case for the lower portion of the Lower Mississippi River, changes in the
n values for any one reach produce varying changes in the computed stages at
all points along the river. This effect is shown in Figure 12. 1In the case
of a 20 percent increase in the friction for the Donaldsonville - Carrollton
reach, the rms variation in the stage hydrographs varies from positive to
negative depending upon the location of the gage in question with respect to



the reach of river for which the n values are increased. The most signifi-
cant change is an increase in the stages at locations a short distance
upstream and downstream of Donaldsonville. However, the effect vanishes at
locations far upstream and downstream of Donaldsonville. Also, it. should be
noted that the variation of the rms of the stage hydrograph changes from a
positive effect to a negative effect at a particular location within the
reach in which fi is _increased. Quite similar but opposite effects are
produced in the rms of the stage hydrographs when the friction of the
Donaldsonville - Carrollton reach is decreased by 20 percent.

Significance of terms in the equation of motion. The significance of
the various terms in the equation of motion or dynamic equilibrium can be
assessed by comparing their magnitudes. Such a comparison is given in
Table 2 for a gradually varying transient (the 1963 flood in the Lower
Mississippi) and for a more rapidly varying transient (the 1969 Hurricane
Camille in the Lower Mississippi). In the former, the terms are evaluated
at Reserve for both the rising limb and peak of the flood, while in the
latter the terms are evaluated at Carrollton for both the rising limb and
peak of the hurricane surge.

For the case of the slowly varying transient, it is evident that the
local acceleration term is negligible compared to the friction slope term.
However, the convective acceleration term is about 23 percent of the friction
slope while the water surface slope has a magnitude of about 80 percent of the
friction slope. Thus, the inclusion of the water surface slope term is
considered essential while the inclusion of the convective acceleration term
is of questionable value. Also, in Table 2 it is seen that the friction slope
is 930 to 2,000 percent of the effective channel bottom slope at Reserve.
This implies that a kinematic routing model, e.g., Brakensiek [1965] and Harley
et al. [1970], which assumes the friction slope to be identical with the bottom
slope would be in serious error. Likewise, hydrologic routing methods such as
the Muskingum method which are derived from the same basic assumption [Cunge,
1969] would be of questionable value. Since the water surface slope term must
be included, it would seem that the least complicated routing model for slowly
varying transients in the lower portion of the Lower Mississippi River would
be a diffusion wave approximation [Brakensiek, 1965] in which the following
simplified equation of motion is used:

3h _
a—x- + Sf =0 (14)

However, if an implicit finite difference formulation is used so as to eliminate
problems of numerical stability and permit large computational time steps which
are essential for efficient computation of slowly varying transients, only about
a 20 percent savings in computer time would be realized [Sevuk, 1973]. 1In view
of this and the fact that the dynamic routing model used herein uses the complete
form of the equation of motion such that the questionable convective acceleration
term is not neglected, the implicit dynamic routing model is considered to be the
appropriate model for computation of slowly varying transients in rivers of
extremely mild channel bottom slopes.

- 10 -



For the case of the hurricane surge, the local acceleration term is quite
significant, especially for the rising limb where its magnitude is 400
percent of the friction slope. As in the case of the 1963 flood computation,
the convective acceleration term is of questionable significance since its
magnitude is only about 12 percent of the friction slope. The water surface
slope is quite significant, varying from 144 to 528 percent of the friction
slope. Also, the friction slope is about 214 percent of the channel bottom
slope. Thus, the relative magnitudes of the terms in the equation of motion
indicate that the only term of questionable -significance is the convective
acceleration term; however, inclusion of this term does not materially
increase the computation time. Hence, the implicit dynamic routing model
which uses the complete equation of motion is considered the appropriate
model for computation of hurricane surges in the lLower Mississippi River.

SUMMARY AND CONCLUSIONS

An implicit four-point finite difference technique was used to solve
the complete one-dimensional equations of unsteady flow in conformance
with initial and boundary conditions. The implicit dynamic routing model
was calibrated and tested using data from floods pPropagating downstream and
a hurricane surge propagating upstream through a 292 mile reach of the Lower
Mississippi River.

The model proved to be very efficient computationally, e.gq., routing a
56 day flood through the 292 mile study reach required less than 10 sec of
CDC 6600 computer time. The computed stages compared favorably with observed
Stages at several gaging stations located along the study reach. The implicit
dynamic routing model is flexible in that it permits the following:

1) computational time steps are not limited in size by numerical
stability problems; therefore, they can be chosen so as to effect
a suitable compromise between required computation time and
acceptable accuracy;

2) computational distance steps can be unequal which is generally
‘necessary whenmodeling natural channels of irreqular geometry; and

3) transient waves which propagate downstream and/or upstream can be
modeled since the inertia, pressure, friction, and gravity forces
are included in the equation for conservation of momentum.

The implicit dynamic routing model is sensitive to the values selected
for the Manning roughness coefficients. These should be determined from stage-
discharge data via a combination of steady flow backwater computations and
trial-and-error calibration runs using the dynamic routing model.
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Table 1.

Hydrograph for 1963 Spring Flood at Donaldsonville

Effect of Computational Time Step Size on Computed Stage

Computation Time per

Donaldsonville Stage,

Courant Total Computation Time for
Number 56 Day Transient Routed Day of Transient rms Error Based on
At cn Through 24 A8x Finite Reaches Routed per Finite Reach Stage Computed with
At of 1 hr.
(hr) (sec) (sec/day/reach) (ft)
1 6.7 50 0.0373 0.00
24 160 9 0.0067 0.05
48 320 3.7 0.0028 0.09 .
96 640 2.7 0.0020 0.23
240 1600 2.0 0.0015 0.48
Table 2. Comparison of Terms in Equation of Motion
Transient s s S /8 1 1 1 .2 1.2 ah/ax
Flow £ o £ %o - av/at 95F /e 35 v/ax 295, v /x 3h/ax s
Location pescription (ft/ft) (ft/ft) (%) (ft/ft) (s) (ft/ft) (%) (ft/ft) (%)
Reserve 1963 Flood
RM 138.7 Rising Limb .0000130 .0000014 930. -.0000002 1.5 -.0000027 22. -.0000106 82.
Reserve 1963 Flood
RM 138.7 Peak .0000280 .0000014  2000. -.0000000 0.0 -.0000067 24. -.0000217 8.
Carrcllton 1969 Surge
RM 102.8 Rising Limb -.0000028 . 0000014 200. -.0000112 400. .0000003 11. .0000148 528.
Carrollton 1969 Surge
RM 102.8 Peak -.0000032 .0000014 -.0000010 31. . 0000004 12. .0000046 144.

228.
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